
Evaluating Directed Fuzzers: Are We Heading in the Right

Direction?

TAE EUN KIM, KAIST, Korea

JAESEUNG CHOI∗, Sogang University, Korea

SEONGJAE IM, KAIST, Korea

KIHONG HEO, KAIST, Korea

SANG KIL CHA, KAIST, Korea

Directed fuzzing recently has gained significant attention due to its ability to reconstruct proof-of-concept
(PoC) test cases for target code such as buggy lines or functions. Surprisingly, however, there has been no
in-depth study on the way to properly evaluate directed fuzzers despite much progress in the field. In this
paper, we present the first systematic study on the evaluation of directed fuzzers. In particular, we analyze
common pitfalls in evaluating directed fuzzers with extensive experiments on five state-of-the-art tools, which
amount to 30 CPU-years of computational effort, in order to confirm that different choices made at each
step of the evaluation process can significantly impact the results. For example, we find that a small change
in the crash triage logic can substantially affect the measured performance of a directed fuzzer, while the
majority of the papers we studied do not fully disclose their crash triage scripts. We argue that disclosing
the whole evaluation process is essential for reproducing research and facilitating future work in the field
of directed fuzzing. In addition, our study reveals that several common evaluation practices in the current
directed fuzzing literature can mislead the overall assessments. Thus, we identify such mistakes in previous
papers and propose guidelines for evaluating directed fuzzers.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Security and

privacy→ Software and application security.

Additional Key Words and Phrases: Fuzz testing, Directed fuzzing, Fuzzer evaluation

ACM Reference Format:

Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha. 2024. Evaluating Directed Fuzzers:
Are We Heading in the Right Direction?. Proc. ACM Softw. Eng. 1, FSE, Article 15 (July 2024), 22 pages.
https://doi.org/10.1145/3643741

1 INTRODUCTION

Directed grey-box fuzzing [Böhme et al. 2017] (directed fuzzing in short) has recently gained
significant interest in software testing. While traditional (undirected) fuzzing tries to test every
part of a program to maximize the number of bugs found, directed fuzzing aims at quickly testing
a specific part of the program given by the user. Such a capability of directed fuzzing has been
demonstrated in various applications such as testing recently modified code, reproducing crash
reports, as well as verifying static analysis alarms.

∗Corresponding author.

Authors’ addresses: Tae Eun Kim, taeeun.kim@kaist.ac.kr, KAIST, Korea; Jaeseung Choi, jschoi22@sogang.ac.kr, Sogang

University, Korea; Seongjae Im, seongjae114@kaist.ac.kr, KAIST, Korea; Kihong Heo, kihong.heo@kaist.ac.kr, KAIST, Korea;

Sang Kil Cha, sangkilc@kaist.ac.kr, KAIST, Korea.

© 2024 Copyright held by the owner/author(s).

ACM 2994-970X/2024/7-ART15

https://doi.org/10.1145/3643741

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0009-2442-8646
HTTPS://ORCID.ORG/0000-0002-5493-9174
HTTPS://ORCID.ORG/0009-0006-5171-9447
HTTPS://ORCID.ORG/0000-0003-2671-0142
HTTPS://ORCID.ORG/0000-0002-6012-7228
https://doi.org/10.1145/3643741
https://orcid.org/0009-0009-2442-8646
https://orcid.org/0000-0002-5493-9174
https://orcid.org/0009-0006-5171-9447
https://orcid.org/0000-0003-2671-0142
https://orcid.org/0000-0002-6012-7228
https://doi.org/10.1145/3643741

15:2 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

While various approaches have been proposed to improve the effectiveness of directed fuzzing
[Böhme et al. 2017; Canakci et al. 2022; Chen et al. 2018; Du et al. 2022; Huang et al. 2022; Kim
et al. 2023b; Lee et al. 2021; Luo et al. 2023; Meng et al. 2022; Nguyen et al. 2020; Österlund et al.
2020; Shah et al. 2022; Srivastava et al. 2022; Zong et al. 2020], there has been less interest in how to
properly evaluate directed fuzzers. Although Klees et al. [2018] explored the problems in evaluating
undirected fuzzers, such as the impact of initial seed corpus and timeout parameters, we find that
there remain many open questions in evaluating directed fuzzers. Evaluating directed fuzzers poses
unique challenges in that (1) the fuzzer under evaluation must be provided with a specific goal, and
(2) one should be able to quantitatively measure how well the fuzzer achieves the goal.

Though one of the main practice for evaluating directed fuzzing is to reproduce a known bug,
there exist ambiguities in specifying the target bug. For instance, previous work often specified
the target bug with a CVE ID, but this could be an ambiguous specification because CVEs may
not come with explicit buggy line information. Hence, it is difficult to know what is the expected
buggy behavior to trigger for a given CVE, and which part of the code is associated with the CVE.
Depending on the interpretation of the CVE, one may set a slightly different target for the fuzzers,
which can change the evaluation result significantly. Previous work has largely overlooked this
problem and does not explicitly reveal the target source line(s) used in the experiment.
Another issue arises when we try to measure the performance of fuzzers in reproducing the

target bug. That is, it is not trivial to determine whether the fuzzers have found a crash that
corresponds to the target bug. This process is often referred to as crash triage. Klees et al. [2018]
recommend triaging crashes based on the patch that fixes the target bug. For instance, if a crash
detected by the fuzzer disappears after applying the corresponding patch, we consider the fuzzer
has found the target bug. On the other hand, another popular method is to use a sanitizer (such
as AddressSanitizer [Serebryany et al. 2012]) to triage the crashes. For instance, one can check if
the sanitizer report contains the crash location detected by the fuzzer. However, our study reveals
that there are subtle issues in both methods, which can significantly affect the evaluation results
according to our experiments.

In addition, previous work often overlooks the static analysis time despite its impact on overall
performance evaluations of the fuzzers. In directed fuzzing, static analysis is often used to provide
better guidance for the fuzzers. However, static analysis may be computationally expensive, some-
times even more expensive than the fuzzing itself. With our experiment, we show that the static
analysis time can significantly affect the overall performance.

Lastly, there has been no systematic study on the impact of the repetition count and the appro-
priate use of statistical tests in directed fuzzing evaluation. Our experiment indicates that repetition
counts adopted in previous work are often too small to effectively mitigate the intense randomness
of directed fuzzing. Moreover, we highlight that the Mann-Whitney U test (a.k.a.MWU test) [Mann
andWhitney 1947], which is commonly used in evaluating fuzzers, cannot account for the timed-out

cases in directed fuzzing. Instead, we suggest that the standards from survival analysis should be
employed more widely when interpreting the result of repeated runs with directed fuzzers.
In this paper, we identify common ambiguities and pitfalls in each step of directed fuzzing

evaluation: target specification, triage method, static analysis, repetition of fuzzing, and statistical
tests. We not only survey the previous work but demonstrate that these concerns are real threats in
real-world fuzzing evaluations through our concrete experiments. Our experiments were conducted
with 5 state-of-the-art directed fuzzers on a benchmark of 12 real-world bugs, scaling up to a total
volume of 30 CPU-years. In particular, we tested the fuzzers with varying target lines for the same
CVEs and with different crash triage methods. We also measured the static analysis time to study
its impact on the overall performance of fuzzers. Furthermore, we tested different repetition counts

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:3

Algorithm 1: Evaluating Directed Fuzzer

input : fuzzing algorithm �DII, program % , timeout Timeout,

target bug) , // Problem P1 in §4

crash triage method Triage, // Problem P2 in §5

pre-processing algorithm Preproc, // Problem P3 in §6

number of repetitions Reps, // Problem P4 in §7.1

output : statistical number on the Time-To-Exposure (TTE) of target)

1 % ′ ← Preproc(% ,))

2))�B ← [] // List of measured TTEs

3 for 8 ← 1 to Reps do

4 Crashes← �DII(% ′, Timeout)

5))� ← ComputeTTE (Crashes, Triage) // Shortest time to exposure

6))�B .insert())�)

7 return StatCalc(TTEs) // Problem P5 in §7.2

and tried different statistical tests to investigate how the evaluation results are affected by these
choices.
Our contributions are summarized as follows:

• We identify common ambiguities and pitfalls in evaluating directed fuzzers including target
specification, triage process, static analysis time, repetition count, and statistical analysis.
• We propose constructive guidelines to handle the issues for conducting transparent and repro-
ducible evaluations.
• Our extensive experiments (30 CPU-year volume) demonstrate that the concerns above are
realistic threats in directed fuzzing evaluation. We faithfully open-source the artifacts for our
experiments [Kim et al. 2024].

2 EVALUATION OF DIRECTED FUZZING

In this section, we first present a generalized algorithm to evaluate the performance of directed
fuzzers. We then introduce several issues that can arise in evaluating directed fuzzers.

2.1 Evaluation Algorithm

At a high level, directed fuzzing is a process of generating test cases that can reach a specific
target location in a program and eventually trigger a bug in that location. For brevity, we assume
that a single location is given to the fuzzer, but our study is generally applicable to multi-target
cases. Our primary focus is on grey-box fuzzing because it is the most widely used approach today.
Nevertheless, we believe our findings and discussions are also applicable to other approaches such
as black-box [Wang et al. 2010] or white-box [Christakis et al. 2016] fuzzing, as our study does not
make any assumption about the internals of directed fuzzing methodology.

While existing directed fuzzers employ different techniques to guide the fuzzing process, we can
define a generalized process to evaluate their performance as they share the same goal: reaching a
target location and triggering a bug in that location. Algorithm 1 describes the common process for
evaluating a directed fuzzer. The algorithm takes in seven parameters as input: a fuzzing algorithm
�DII, a program % , a timeout Timeout, a target bug) , a crash triage method Triage, a preprocessing
algorithm Preproc, and the number of repetitions Reps.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:4 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

Using these parameters, the algorithm evaluates the effectiveness of the given fuzzing algorithm
�DII based on the time required to expose the target bug, which is often referred to as Time-To-

Exposure or TTE. A fuzzer with a shorter TTE is deemed more effective in reproducing the target
bug. If we are to evaluate the effectiveness of undirected fuzzers, there are various metrics that
have to be considered together, such as code coverage, number of unique bugs found, and the
severity of the found bugs. However, note that the evaluation of directed fuzzer is always performed
with regard to a specific target bug. Therefore, TTE is the most direct metric for measuring the
effectiveness of a directed fuzzer in terms of finding the targeted bug.
In Line 1, the fuzzer performs a preprocessing step for the program under test. This step may

involve a simple instrumentation for runtime feedback or a detailed static analysis for better
guidance. The instrumented program is then used in Line 4 to perform directed fuzzing until the
timeout Timeout is reached. After the fuzzing phase, we classify the discovered crashes with the
provided triage method (Triage) and compute the TTE of the target bug in Line 5. This process is
repeated Reps times (Line 3), and finally, the algorithm returns the effectiveness of the fuzzer in the
form of statistical numbers, such as the median of TTEs and the p-value of a statistical test (Line 7).
Note that most of the statistical tests are performed with the TTEs of two fuzzers to compare, not
over the TTEs of a single fuzzer. We omitted this detail in our algorithm for simplicity.

One may adapt this algorithm to evaluate directed fuzzers in terms of the time to reach a target
location, often dubbed Time-To-Reach or TTR, instead of the time to expose a target bug. Although
our algorithm is applicable to such scenarios, we focus on evaluating the effectiveness of directed
fuzzers in terms of TTE, as it is the primary metric used in most directed fuzzing papers.

Despite the simplicity of Algorithm 1, we find several critical issues in the evaluation of directed
fuzzers, marked as P1 – P5 in the algorithm. We outline the pitfalls of directed fuzzing evaluation
in §2.2 and discuss them thoroughly in the following sections.

2.2 Issues in Evaluating Directed Fuzzers

We now introduce several issues that can arise in evaluating directed fuzzing. We reviewed 14
directed fuzzing papers recently published in security or software engineering venues and investi-
gated how they handled these issues. Table 1 summarizes several key aspects of their tools and the
way they evaluated their tools, such as the open-sourcing status, benchmark selection, specification
of the target line, triage method, static analysis time, repetition count, and the choice of statistical
test method. In the rest of the paper, we identify and discuss the following five problems that can
significantly affect the evaluation results.

P1 We observe that a target bug ()) to the fuzzer (Line 1 in Algorithm 1) is often not clearly
specified. While most of the existing directed fuzzers take in buggy line number(s) as input, many
existing papers simply report the CVE IDs used in their experiments without further details.
Unfortunately, it is not always straightforward to identify the buggy location of a program from
the CVE description [MITRE 2023]. Despite such an issue, many papers do not explicitly specify the
target lines used in their experiments, as indicated in Table 1. We further investigate this problem
in §4.

P2 We find that crash triage is often not discussed in detail, although it can significantly affect the
measured TTE. After a fuzzing campaign, one should triage the found crashes (Line 5 in Algorithm 1)
to determine whether the targeted bug was found. A common approach is sanitizer-based triage,
which uses a sanitizer such as AddressSanitizer [Serebryany et al. 2012] (a.k.a. ASAN) to obtain the
type and location of the crash. This allows us to check whether the expected type of bug occurred
in the expected location. However, writing a concrete logic for such checks is error-prone and
requires a deep understanding of the target bug. For instance, if the target bug can raise crashes
in multiple locations, the triage logic must accept all such locations. Another popular method

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:5

T
a
b
le
1
.
S
u
m
m
a
ry

o
f
d
irected

fu
zzin

g
p
a
p
ers

w
e
su
rvey

ed
.
F
o
r
ea
ch

co
lu
m
n
,

in
d
ica

tes
th
a
t
th
e
co
d
e
o
r
d
a
ta

is
p
u
b
licly

a
va
ila
b
le,

w
h
ile
G#

m
ea
n
s
th
e

in
fo
rm

atio
n
is
p
artially

availab
le
an

d
-
m
ean

s
th
e
in
fo
rm

atio
n
is
n
o
t
availab

le.O
p
e
n
-so

u
rce

d
co
lu
m
n
d
en
o
tes

w
h
eth

er
th
e
to
o
l
is
o
p
en
-so

u
rced

.B
e
n
ch

m
a
rk

co
lu
m
n
su
m
m
a
rizes

th
e
ty
p
es

o
f
b
en
ch
m
a
rk
s
u
sed

in
th
e
p
a
p
er.W

e
o
n
ly

co
n
sid

ered
th
e
b
en
ch
m
a
rk
s
fo
r
T
T
E
exp

erim
en
ts.T

a
rg
e
t
L
in
e
in
d
ica

tes
w
h
eth

er
th
e

p
a
p
er

o
r
a
rtifa

ct
exp

licitly
sp
ecifies

th
e
ta
rg
et

lin
es

p
ro
vid

ed
to

th
e
fu
zzers.

T
ria

g
e
M
e
th
o
d
d
en
o
tes

h
o
w
th
e
fo
u
n
d
cra

sh
es

w
ere

cla
ssified

a
n
d
S
.A
.
T
im

e

d
en
o
tes

w
h
eth

er
th
e
p
a
p
er

rep
o
rts

th
e
tim

e
sp
en
t
o
n
th
e
sta

tic
a
n
a
ly
sis.

R
e
p
s
d
en
o
tes

h
o
w
m
a
n
y
tim

es
ea
ch

fu
zzer

w
a
s
ru
n
rep

ea
ted

ly
in

th
e
exp

erim
en
t.

S
ta
t.
T
e
st

d
en
o
tes

th
e
sta

tistica
l
test

u
sed

to
co
m
p
a
re

th
e
p
erfo

rm
a
n
ce

o
f
th
e
fu
zzers.

P
1

P
2

P
3

P
4

P
5

F
u
zze

r
O
p
e
n
-so

u
rce

d
B
e
n
ch

m
a
rk

b
T
a
rg
e
t
L
in
e
c

T
ria

g
e
M
e
th
o
d

S
.A
.
T
im

e
d

R
e
p
s

S
ta
t.
T
e
st e

A
FL

G
o
[B
ö
h
m
e
et

al.2017]

C
V
E

G#
P
atch

-based
-

20
M
W
U
,V

D
A

H
aw

k
ey
e
[C

h
en

et
al.2018]

-
C
V
E

-
-

G#
8

V
D
A

Fu
zzG

u
ard

[Z
o
n
g
et

al.2020]
-

C
V
E

-

-
-

-

P
arm

eSan
[Ö

sterlu
n
d
et

al.2020]

C
V
E
,FT

S
[G

o
o
g
le
2021]

G#
-

G#
30

M
W
U

T
arg

etFu
zz

[C
an
ak
ci
et

al.2022]
-

M
ag
m
a
[H

azim
eh

et
al.2021]

-
A
ssertio

n
-based

-
20

-

U
A
Fu

zz
[N

g
u
y
en

et
al.2020]

C
V
E

San

itizer-based

10
V
D
A

C
A
FL

[L
ee

et
al.2021]

-
C
V
E
,L
A
V
A
[D

o
lan

-G
av
itt

et
al.2016]

-

-
3

M
W
U

B
eaco

n
[H

u
an
g
et

al.2022]
G#

a
C
V
E

-
-

G#
10

M
W
U

L
T
L
-Fu

zzer
[M

en
g
et

al.2022]

C
V
E

-
A
ssertio

n
-based

-
10

M
W
U
,V

D
A

M
C
2
[Sh

ah
et

al.2022]

M
ag
m
a

-
A
ssertio

n
-based

20

M
W
U

SieveFu
zz

[Sriv
astav

a
et

al.2022]

C
V
E
,M

ag
m
a,C

G
C
[B
its

2017]

San
itizer-based

G#
10

V
D
A

W
in
d
R
an
g
er

[D
u
et

al.2022]

C
V
E
,FT

S
G#

P
atch

-based
-

20
M
W
U
,V

D
A

D
A
FL

[K
im

et
al.2023b]

C
V
E

San

itizer-based

40
-

SelectFu
zz

[L
u
o
et

al.2023]

C
V
E
,FT

S

San
itizer-based

-
5

M
W
U

a
B
eaco

n
is
n
o
t
o
p
en
-so

u
rced

,bu
t
th
e
p
re-bu

ilt
bin

ary
is
av
ailable

in
th
e
p
ro
v
id
ed

D
o
ck
er

im
ag
e.

b
FT

S
stan

d
s
fo
r
Fu

zzer
T
est

Su
ite

an
d
C
G
C
fo
r
D
A
R
PA

C
y
b
er

G
ran

d
C
h
allen

g
e.

c
Fu

zzers
m
ark

ed
w
ith
G#

sp
ecifi

ed
th
e
targ

et
lin

e
o
n
ly

fo
r
th
e
su
bset

o
f
th
e
b
en
ch
m
ark

.
d
Fu

zzers
m
ark

ed
w
ith
G#

o
n
ly

rep
o
rt
th
eir

o
w
n
static

an
aly

sis
tim

e.
e
M
W
U
stan

d
s
fo
r
M
an
n
-W

h
itn

ey
U
test

an
d
V
D
A
fo
r
V
arg

h
a
an
d
D
elan

ey
A
m
easu

re.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:6 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

is patch-based triage, which replays each found crash on a patched version of the program that
no longer contains the target bug. If the patched program gracefully exits, we can classify the
crash as the target bug. Unfortunately, obtaining a patch that precisely fixes the target bug can be
challenging. Alternatively, there is assertion-based triage, which inserts an explicit assertion that
checks whether the target bug occurred. If an input makes the assertion fail, we consider that the
input has triggered the target bug. While it may appear simple, formulating concrete logic for the
assertion also requires a careful investigation on the target bug. According to our observation, such
pitfalls are largely overlooked in previous papers. Only 9 out of 14 papers specify the type of the
crash triage method used in their experiments. Moreover, only 5 of them provide enough details
about the triage process required to reproduce the experiment [Canakci et al. 2022; Kim et al. 2023b;
Nguyen et al. 2020; Shah et al. 2022; Srivastava et al. 2022]. In §5, we provide an in-depth discussion
of these pitfalls and show that a small mistake can significantly change the measured TTEs.

P3 We find that the static analysis time is often not considered in the measured TTE. Although
many directed fuzzers perform static analysis in the preprocessing step (Line 1 in Algorithm 1),
the time required for static analysis is often not included when comparing the TTEs, or not even
reported in most cases. Unfortunately, our study shows that the static analysis time can have a
significant impact on the measured TTE. In §6, we discuss the importance of considering the static
analysis time and show its impact on the TTE.

P4 We find that the number of repetitions is often too small. Due to the random nature of
fuzzing, it is well-known that fuzzing experiments must be repeated multiple times [Klees et al.
2018]. Accordingly, directed fuzzing papers repeat the fuzzing phase multiple times to mitigate the
randomness of fuzzing (Line 3 in Algorithm 1). However, our study reveals that directed fuzzing
evaluation requires a larger number of repetitions than normally expected by the researcher. In
§7.1, we elaborate on this problem and provide guidelines for performing repeated experiments.

P5 We find that the current practice of statistical tests is often not appropriate for directed
fuzzing. Directed fuzzing papers typically report (1) the median of TTE measured over repeated
runs and (2) the p-value obtained from the MWU test (Line 7 in Algorithm 1) to report the result
obtained from the repeated experiments. However, our study reveals that the MWU test is not
appropriate for directed fuzzing, as directed fuzzers often fail to find the target bug within the
given time limit. Additionally, we demonstrate that the result of the MWU test may mislead the
readers in certain cases. In §7.2, we elaborate on this problem and provide guidelines for analyzing
repeated experiments.

In summary, we found that the above issues are often not clearly discussed in the previous work.
This poses a hurdle in identifying the exact settings for the evaluation. In the following sections,
we demonstrate that these settings can change the evaluation results significantly.

3 EXPERIMENTAL SETUP

We conducted various experiments to show that the aforementioned issues are practical threats
to the directed fuzzing evaluation. In this section, we describe the experimental setup used in our
paper. The artifact of our experiment is available at Zenodo [Kim et al. 2024].

Fuzzers. We selected 5 open-sourced directed fuzzers for our experiment: AFLGo (commit b170fad),
Beacon (Docker image a09c8cb), WindRanger (Docker image 8614ceb), DAFL (commit
a6fcc56), and SelectFuzz (commit 9dea54f).

Target bugs. We used 12 target bugs from previous directed fuzzing papers, which are summarized
in Table 2. We first included 6 bugs from the binutils package, since they are widely used
in the papers we listed in Table 1. In addition, we added 6 more bugs that are shared by
DAFL, Beacon, and partially by SelectFuzz. By default, we reused the target lines from the

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:7

Table 2. Our benchmark selection.

Package Prog. CVE Previous Work

Binutils cxxfilt

2016-4487 AFLGo, Beacon, WindRanger, Hawkeye, ParmeSan, DAFL, UAFuzz

2016-4489 AFLGo, Beacon, WindRanger, Hawkeye, ParmeSan, DAFL

2016-4490 AFLGo, Beacon, WindRanger, Hawkeye, ParmeSan, DAFL

2016-4491 AFLGo, Beacon, WindRanger, Hawkeye, ParmeSan, DAFL, SelectFuzz

2016-4492 AFLGo, Beacon, WindRanger, Hawkeye, ParmeSan, DAFL

2016-6131 AFLGo, Beacon, WindRanger, Hawkeye, ParmeSan, DAFL

Libming sw�ophp

2016-9827 Beacon, DAFL, SelectFuzz

2016-9829 Beacon, DAFL

2016-9831 Beacon, DAFL, CAFL

2017-9988 Beacon, DAFL

2017-11728 Beacon, DAFL, SelectFuzz

2017-11729 Beacon, DAFL

open-sourced artifact of DAFL [Kim et al. 2023a]. In §4, we also study the effect of using
different target lines.

Sanitizer. We disabled sanitizers when preprocessing target programs for the fuzzing session
because Beacon does not support programs instrumented with a sanitizer. However, we can
still use sanitizers when replaying the test cases and analyzing the found crashes.

Crash Triage. We utilized patch-based triage as our default triage method. In §5, we further
explore other triage methods.

Timeout & Repetitions. We repeated all the experiments 160 times, each with a timeout limit of
24 hours. In §7, we provide the justification for using such a large repetition number.

Machine Environment. Each run of fuzzing was performed in a Docker container assigned with
4GB of main memory and a single CPU core of Intel Xeon Gold 6226R (2.90 GHz).

Note that our objective is not to compare and rank the performance of the fuzzers. Instead,
we aim to find out challenges in the evaluation process by thoroughly investigating each target
bug. Therefore, we do not focus on using a comprehensive set of benchmarks. Despite the limited
scale of our benchmark, our experiments identify realistic threats to the validity of the evaluation,
indicating that such threats will persist with a larger benchmark.

4 TARGET SPECIFICATION

The first step of evaluating a directed fuzzer is to specify a target bug. In this section, we review
the current practice and discuss the issues involved in this step.

4.1 Current Practice: Reporting CVE ID

The most common practice in the literature is to report the CVE ID of a target bug used in the
experiment. While the CVE database provides useful information about the target bug—such as the
bug type, relevant function names, a patch, and even a PoC input for triggering the crash—it is
insufficient to decide which source line should be used as the target line for directed fuzzing.

This is mainly because a single CVE may be associated with multiple bugs that have different root
causes. For instance, CVE-2016-4492 [MITRE 2016c] in Figure 1 has two distinct crashing locations,
each of which is caused by a different root cause. In the provided code, get_count can return a
negative integer in n. However, the two call sites of get_count in the figure use the returned n as
an array index without checking its range, which leads to crashes at Line 9 and Line 14, respectively.
The developer’s patch [Böhme 2016b] adds a range check for n before Line 9 and Line 14, which also

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:8 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

1 int do_type(struct work_stuff *work, char **mangled, ...) {

2 int n;

3 ...

4 switch (**mangled) {

5 ...

6 case 'T':

7 get_count (mangled, &n);

8 + if (n < 0) break; // line added by patch

9 remembered_type = work->typevec[n]; // crash location 1

10 ...

11 case 'B':

12 get_count (mangled, &n);

13 + if (n < 0) break; // line added by patch

14 string_append (result, work->btypevec[n]); // crash location 2

15 ...

16 }

17 }

Fig. 1. Simplified code and patch of CVE-2016-4492.

Table 3. Performance comparison of using different target lines for CVE-2016-4492.

Median TTE (s)

Target Location AFLGo Beacon WindRanger SelectFuzz DAFL

Line 9 373 333 2,460 432 787
Line 14 332 499 339 581 149

suggests that the two crashes are caused by different root causes. Nevertheless, these two crashes
are grouped under the same CVE ID and the PoC inputs from the original bug report [Böhme 2016]
also reproduce the crashes in both of the lines. Therefore, both lines can be considered as equally
valid target sites for CVE-2016-4492, according to the bug report.

One may wonder whether choosing one line over the other makes any meaningful difference.
While both lines reside in the same function and share conceptually similar code patterns, our
experiment demonstrates that the choice of a target line makes a significant difference when
evaluating directed fuzzers. Table 3 presents the median of TTEs computed over 160 repetitions,
with directed fuzzers given different target lines for CVE-2016-4492. The result indicates that
the performance significantly depends on which target line is used. For example, WindRanger
underperformed when Line 9 was used as the target line, but it demonstrated significantly better
performance when provided with Line 14 as input.
We believe that the ideal solution for this case is to split CVE-2016-4492 into two distinct bugs,

each having its own crashing location as the target line. Then we can use each of them separately
for directed fuzzing evaluation. It is understandable that the CVE maintainers may want to group
the two bugs under the same CVE ID for their convenience since they have similar code patterns.
From the perspective of directed fuzzing, however, the two lines should be treated as distinct bugs.

The case study of CVE-2016-4492 shows that each researcher can make different decisions during
the evaluation process if a CVE ID is the only available information about the target bug. Moreover,
such decisions make a significant difference in the evaluation result. Unfortunately, many directed
fuzzing papers only provide a CVE ID as the target bug description. Out of the 12 papers that used

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:9

1 void string_appendn(string *p, char *s, int n) {

2 if (n != 0) {

3 string_need(p, n);

4 memcpy(p->p, s, n);

5 p->p += n;

6 }

7 }

8

9 int gnu_special(struct work_stuff *w, char **mangled, string *declp) {

10 ...

11 int n = consume_count(mangled); // returns -1 in n

12 + if (n == -1) break; // line added by patch

13 string_appendn(declp, *mangled, n);

14 ...

15 }

Fig. 2. Simplified code and patch of CVE-2016-4489.

Table 4. Performance comparison of using two different target lines for CVE-2016-4489.

Median TTE (s)

Target Location Beacon WindRanger SelectFuzz DAFL

Line 4 252 243 274 246
Line 13 248 98 154 222

CVEs in the experiment, 6 papers simply report the CVE IDs of their target bugs. Thus, there is no
guarantee that the experimental results of the previous work are consistent with each other.

4.2 Issues When Specifying Target Line

One natural solution is to explicitly provide a concrete target line, as shown in Table 3. However,
we still have to be careful when selecting a specific line for the directed fuzzer. Suppose that a
crashing line is given and various call contexts can reach this line. While some of these call contexts
are buggy, other contexts are not, thus irrelevant to the crash. Under this circumstance, two options
are available when choosing a target line. First, we can simply choose the final crashing line.
Alternatively, we can choose a line that appears in the stack trace of the crash, which may better
represent the context of the target bug.

A good example of such a case is CVE-2016-4489 [MITRE 2016a], which is presented in Figure 2.
This bug is triggered when gnu_special calls string_appendn with −1 as the argument n. The
crash occurs at Line 4 of string_appendn, which can be an obvious target line for directed fuzzers.
However, one may also note that string_appendn has eight call sites and Line 13 of gnu_special
is the only call site that passes an invalid value to the argument n and causes a crash. Moreover,
the developer’s patch [Böhme 2016a] also adds a graceful exit before Line 13 when n has the value
of −1. In this respect, Line 13 can be a target line that is more closely related to the root cause of
the bug.
To show the impact of this choice, we ran directed fuzzers with different target lines for CVE-

2016-4489. Note that despite the different target lines, we checked for the same crash, the crash
that occurs at Line 4. Table 4 summarizes the result. AFLGo is not included here because it failed

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:10 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

to run when Line 4 was given as input1. Interestingly, the four fuzzers demonstrated comparable
performance with Line 4, the crashing line, being the target line, while WindRanger significantly
outperformed the other fuzzers with Line 13.

Our observation shows there can be multiple possible options for choosing a target line for a bug,
and different choices can lead to significantly different evaluation results. Particularly, choosing
the final crashing line is not always the best option because it may miss the context of the target
bug and mislead the directed fuzzers.

P1 Lessons learned. The current practice of using the CVE ID as the target specification
is ambiguous. Our experiment shows that such ambiguities can significantly impact the
evaluation results. Furthermore, it is nontrivial to choose the best target line for a bug in
practice. Therefore, we believe that it is crucial to publicly open the target lines used in the
evaluation so that the results can be reproduced and compared consistently.

5 CRASH TRIAGE

Crash triage in directed fuzzing is the process of determining whether a discovered crash is actually
the targeted bug or not. Since the performance of directed fuzzers is typically evaluated with the
TTE of the target bug, it is crucial to correctly identify the target bug. In this section, we explore the
current practice of crash triage in the literature and discuss the potential pitfalls of each method.

5.1 Current Practice 1: Sanitizer-based Triage

The most widely used method is to classify crashes by investigating the sanitizer log obtained
from each crash. A sanitizer log contains the crash location and the stack trace. Most of the CVEs
previously used in directed fuzzing evaluation are reported with a sanitizer log of a crash, which
can be used as a reference. By comparing it with the log of a crash found during fuzzing, we can
determine if the found crash is the targeted bug.

However, there are several possible choices when comparing two sanitizer logs. We can simply
compare the entire stack traces to decide if the two crashes are the same. Alternatively, we can
compare the crashing lines only, without considering the call contexts. The former can be too strict
and prone to false negatives when the target bug can raise crashes with different stack traces. The
latter can be too permissive and result in false positives because different bugs with distinct root
causes can share the same crashing line.
Moreover, the sanitizer log from the bug report may not provide comprehensive information

about the target bug. For example, it is common for a single bug to potentially cause crashes in
multiple lines depending on the runtime environment. In such a case, we have to carefully design a
triage logic because some crashes may not be explicitly mentioned in the original bug report.
CVE-2016-9831 is a good example that illustrates this issue. The CVE database provides the

following description for CVE-2016-9831 [MITRE 2016d]:

“Heap-based buffer overflow in the parseSWF_RGBA function in parser.c in the listswf tool
in libming 0.4.7 allows remote attackers to have unspecified impact via a crafted SWF file."

Figure 3 presents the simplified buggy code. The program assigns an input integer value to
g->NumGradients at Line 3. However, the value is used in the loop condition without checking
the upper bound. This leads to out-of-bound accesses of array g->GradientRecords, which can
cause a crash in various locations. First, the original ASAN log from the CVE report [MITRE 2016d]

1While other papers often report the TTE of AFLGo for this bug by providing multiple target lines extracted from a stack

trace, we believe this is an unfair setting.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:11

1 void parseSWF_MORPHGRADIENT(FILE *f, SWF_MORPHGRADIENT *g) {

2 ...

3 g->NumGradients = readUInt8(f);

4 // no bound check on g->GradientRecords

5 for (i = 0; i < g->NumGradients; i++)

6 parseSWF_MORPHGRADIENTRECORD(f, &(g->GradientRecords[i]));

7 }

8

9 void parseSWF_MORPHGRADIENTRECORD(FILE *f, SWF_MORPHGRADIENTRECORD *r) {

10 r->StartRatio = readUInt8(f); // potential crash

11 parseSWF_RGBA(f, &r->StartColor);

12 r->EndRatio = readUInt8(f); // potential crash

13 parseSWF_RGBA(f, &r->EndColor);

14 }

15

16 void parseSWF_RGBA(FILE *f, SWF_RGBA *rgb) {

17 rgb->red = readUInt8(f); // crash location by the PoC input

18 rgb->green = readUInt8(f); // potential crash

19 rgb->blue = readUInt8(f); // potential crash

20 rgb->alpha = readUInt8(f); // potential crash

21 }

Fig. 3. Simplified code and patch for CVE-2016-9831.

Table 5. Performance comparison of using different sanitizer-based triage logic for CVE-2016-9831. The first

row checks whether the crash occurred exactly at Line 17, while the second and third row accept crashes

from more lines as CVE-2016-9831.

Median TTE (s)

Lines Checked AFLGo Beacon WindRanger SelectFuzz DAFL

17 1,418 1,069 487 1,777 1,218
17-20 167 177 174 218 103
17-20, 10, 12 159 155 155 200 93

contains a single crash at Line 17. However, depending on the memory layout at runtime, this
buffer overflow can also cause crashes in all the other lines of parseSWF_RGBA. Moreover, it can
even lead to crashes in Line 10 and 12 in a different function, which is not mentioned in the CVE
description. While we believe the crashes from these lines should be also classified as the same
target bug, other researchers may choose to strictly follow the CVE description and reject these
crash lines in their triage logic. To avoid such discrepancy, one must explicitly specify the logic
used for the sanitizer-based triage.

Table 5 confirms that this issue in the triage logic can make a significant difference in the TTE of
this bug. DAFL shows the average performance when we strictly check for Line 17, but becomes
the best-performing fuzzer when we additionally check for other lines.
Since there is no standard approach for sanitizer-based triage that can be applied to all bugs,

each researcher can write different triage logic, depending on one’s understanding of the bug. As
we have observed, such differences in triage logic can lead to different results in the evaluation.
Thus, we believe a paper should avoid simply mentioning the use of sanitizer log as its triage

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:12 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

1 void d_print_comp(d_print_info *dpi, demangle_component *dc) {

2 d_component_stack self;

3 self.dc = dc;

4 self.parent = dpi->component_stack;

5 dpi->component_stack = &self;

6 d_print_comp_inner (dpi, options, dc);

7 ...

8 }

9

10 void d_print_comp_inner(d_print_info *dpi, demangle_component *dc) {

11 ...

12 switch (dc->type) {

13 ...

14 case DEMANGLE_COMPONENT_TAGGED_NAME:

15 d_print_comp(dpi, d_left (dc)); // call d_print_comp with left subtree of dc

16 d_print_comp(dpi, d_right (dc)); // call d_print_comp with right subtree of dc

17 ...

18 }

19 }

Fig. 4. Simplified code of CVE-2016-4491.

Table 6. Performance comparison of using different patches for patch-based triage for CVE-2016-4491. The

number in parentheses denotes the number of times each fuzzer found the target bug out of 160 repetitions.

Note that median cannot be computed if the fuzzer failed to find the bug for more than half of the times.

Median TTE (s) (Success Iterations)

Patch Used AFLGo Beacon WindRanger SelectFuzz DAFL

Incomplete [Wielaard 2016a] N.A. (16) N.A. (11) N.A. (14) N.A. (8) N.A. (63)
Complete [Wielaard 2016a,b] 1371 (158) 1393 (160) 3111 (159) 1754 (158) N.A. (71)

method. Instead, researchers must publicize the concrete logic used in the crash triage, to facilitate
cross-checks and public discussion within the research community.

5.2 Current Practice 2: Patch-based Triage

Another commonly used approach for triage is utilizing a patch of the target bug. If a patch for a
given bug is available, we can build a fixed version of the target program that does not contain the
bug anymore. In this case, if a crashing input of the original program does not crash the patched
version, we can conclude that the input triggers the target bug.

However, obtaining a correct patch for a given bug can be challenging in practice. Sometimes,
patches are incomplete and fail to fully remove the bugs. Moreover, developers occasionally write
a single patch that fixes multiple bugs at once [Böhme 2016b], as pointed out by Klees et al. [2018].
If the targeted bug is fixed by such a patch, we must split it to obtain a patch that only fixes our
target.

CVE-2016-4491 [MITRE 2016b] is an example that highlights the challenges in patch-based triage.
This CVE is a stack overflow bug due to an infinite recursion. As shown in Figure 4, d_print_comp
traverses a graph-like structure dc with recursive calls. The first patch [Wielaard 2016a] detects
a cycle in dc and terminates the program, but it turned out that this fix cannot prevent the stack

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:13

1 void d_count_templates_scopes (int *num_templates, int *num_scopes, demangle_component *dc) {

2 ...

3 switch (dc->type) {

4 ...

5 case DEMANGLE_COMPONENT_DTOR:

6 d_count_templates_scopes (num_templates, num_scopes, dc->u.s_dtor.name);

7 break;

8 ...

9 }

10 }

Fig. 5. Simplified code of CVE-2019-9071.

overflow in d_print_comp completely. A subsequent patch [Wielaard 2016b] was applied afterward
to check for more conditions.

Table 6 presents the result of measuring TTEs for this bug with different patches used for triage.
When the initial incomplete patch is used for triage (first row), the result shows that most of the
generated inputs by the fuzzers are not classified as the target bug. However, if the complete patch
is used (second row), the measured TTEs of all the fuzzers are greatly reduced. This result indicates
that the complete patch can classify more crashes as the targeted one. Furthermore, the relative
ranking between fuzzers fluctuates depending on the patch used. When the incomplete patch is
used, DAFL seems to perform best, but with the complete patch, it turns out that AFLGo has the
shortest median TTE.
Moreover, even if we obtain a correct patch for the target bug, we should be aware of another

pitfall. When a crashing input can actually trigger multiple bugs, patch-based triage may lead
to a false negative. For example, one of the inputs we found can trigger CVE-2016-4491 in the
original program and trigger a different bug, CVE-2019-9071 [MITRE 2019], in the patched pro-
gram. As shown in Figure 5, CVE-2019-9071 is a stack overflow bug that occurs in the function
d_count_templates_scopes. When an input with a pathologically constructed mangled name is
given, d_count_templates_scopes recursively calls itself at Line 6 until the stack overflows.While
CVE-2016-4491 and CVE-2019-9071 are both stack overflow bugs, they occur in different functions
and have different root causes. If the triage scheme only checks whether the patched program
gracefully exits or not, we will fail to recognize that this input originally triggered CVE-2016-4491.
To cope with such inputs, we need to compare the two stack traces more carefully. For instance, we
may additionally check whether the crashing function has changed in the patched version.
In order to avoid such pitfalls, we must carefully choose and explicitly specify the patch that

completely and precisely removes the target bug. Moreover, as we have observed in the case of CVE-
2016-4491 and CVE-2019-9071, we must not only specify the patch but also share the end-to-end
process of triaging the bug with the patch.

5.3 Possible Solutions

As a possible solution, we suggest using a benchmark that comes with a triage logic. In general,
there are two types of benchmarks that can be used for directed fuzzing: (1) benchmarks with
explicit assertions and (2) synthesized benchmarks.

5.3.1 Assertion-based Triage. One possible solution is to use a benchmark with explicit assertions
for each target bug. For example, the Magma benchmark [Hazimeh et al. 2021] consists of a set of
known buggy programs whose bug conditions are manually annotated as assertions. Benchmarks

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:14 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

with such assertions provide a clear and unambiguous triage logic for each bug. Consider the
previous example of CVE-2016-9831 in Figure 3. We can insert an assertion before Line 6 to check
whether the index i is less than the size of GradientRecords. If a test case makes this assertion fail,
we can consider that the targeted buffer overflow is triggered. Despite the difficulty of manually
inserting correct assertions for the target bugs, constructing such a benchmark can be a promising
direction for future research.

5.3.2 Synthesized Benchmark. Another possible solution is to use a synthesized benchmark. There
are two types of synthesized benchmarks: (1) benchmarks that inject synthetic bugs into an existing
program [Dolan-Gavitt et al. 2016; Pewny and Holz 2016; Roy et al. 2018; Zhang et al. 2022] and (2)
benchmarks that are synthesized from scratch [Lee et al. 2022]. The former type of benchmarks
may produce false positives when evaluating directed fuzzers. For instance, fuzzers may trigger
other bugs that already exist in the original program, which is independent of the injected bug.
Additionally, the process of injecting bugs might unintentionally alter the intended behavior of the
original programs, potentially introducing unintended errors. Thus, triage logic is still required to
distinguish the injected bug from other bugs. On the other hand, the latter type of benchmarks
can be a promising solution [Lee et al. 2023]. Since the program is synthesized from scratch, we
can guarantee that the synthesized benchmark contains only the target bug. Thus, directed fuzzers
only have to check whether it has triggered any bugs in the synthesized benchmark.

P2 Lessons learned. Both sanitizer-based and patch-based triages can mislead the evaluation
of directed fuzzers depending on the details of the triage logic. Thus, it can be a desirable
direction to use benchmarks with explicit assertions or synthesized bugs that provide explicit
triage logic. Furthermore, we argue that the whole triage process should be publicized for
consistent evaluation.

6 STATIC ANALYSIS TIME

In the previous section, we focused on triaging the crashes found in the fuzzing phase. Once the
targeted crash is found, we can obtain the TTE by measuring the time elapsed from the start of
fuzzing phase. However, only focusing on the fuzzing phase can be misleading when evaluating
the overall effectiveness of a directed fuzzer. Recall from Algorithm 1 that directed fuzzers require
a preprocessing step before the start of actual fuzzing. In this step, most of the directed grey-box
fuzzers run static analysis on the target program [Böhme et al. 2017; Canakci et al. 2022; Chen et al.
2018; Du et al. 2022; Huang et al. 2022; Kim et al. 2023b; Lee et al. 2021; Luo et al. 2023; Meng et al.
2022; Nguyen et al. 2020; Österlund et al. 2020; Srivastava et al. 2022].
The time spent on static analysis varies significantly among fuzzers2 and even can be longer

than the fuzzing time needed to expose the target bug. Unfortunately, such static analysis time is
often overlooked in the papers, with only a few exceptions [Kim et al. 2023b; Nguyen et al. 2020;
Shah et al. 2022].
Table 7 presents the static analysis time of the directed fuzzers we used for our experiment on

our 12 target bugs. Note that the static analysis time of WindRanger is negligible and omitted
here. The table indicates that static analysis time can have a significant impact on the performance
comparison between fuzzers. For instance, Table 8 specifically shows the two cases comparing
two fuzzers, AFLGo and Beacon. In both cases, AFLGo and Beacon perform similarly in terms of
pure fuzzing time. However, AFLGo takes significantly less time to statically analyze the target
program in the case of CVE-2016-4489, thus, outperforming Beacon when considering overall time.

2In contrast, the instrumentation times are mostly consistent across fuzzers.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:15

Table 7. Static analysis time on each target. The unit is in seconds.

Program CVE AFLGo Beacon SelectFuzz DAFL

cxxfilt

2016-4487 205 2676 173 16
2016-4489 203 4633 173 17
2016-4490 205 3900 173 16
2016-4491 207 4348 173 16
2016-4492 208 4355 173 17
2016-6131 210 3125 174 16

sw�ophp

2016-9827 342 7 75 7
2016-9829 331 9 76 7
2016-9831 337 10 76 7
2017-9988 334 12 77 7
2017-11728 345 7 77 7
2017-11729 345 14 76 7

Table 8. Performance comparison with and without consideration of static analysis time.)5 and)B0 denote

pure fuzzing time and static analysis time, respectively. Note that both are the median of 160 repetitions.

)5 (s))5 +)B0 (s)

Target CVE AFLGo Beacon AFLGo Beacon

2016-4489 226 248 429 4881
2016-9831 264 254 601 264

Interestingly, the vice versa holds true in the case of CVE-2016-9831, where Beacon outperforms
AFLGo when considering overall time.

One may argue that static analysis time is not important because it is a one-time cost. However,
a program is often frequently updated to fix bugs or add new features. In such cases, static analysis
must be performed again to obtain accurate guidance for fuzzing. Therefore, static analysis time is
not always a one-time cost. Furthermore, our experimental results indicate that static analysis time
has a significant impact on the overall performance of fuzzers.

P3 Lessons learned. Static analysis time was often overlooked in previous work, yet has a
significant impact on the overall performance of fuzzers. We suggest that directed fuzzing
papers should include static analysis time in the report to provide readers with comprehensive
information about the usefulness of each fuzzer.

7 REPETITION AND STATISTICAL TEST

Previous sections have discussed the measurement of the TTE from a single run of fuzzer. However,
due to the random nature of fuzzing, it is necessary to run each fuzzing session multiple times. In
this section, we explore whether previous papers have properly conducted such repetitions and
analyzed the results.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:16 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

Table 9. The minimum, maximum, and median TTE of each directed fuzzer, in seconds. If a fuzzer failed to

find the target bug, we mark the maximum TTE as timeout (T.O.) and report the number of such timeouts in

parentheses. If the timeout occurred for more than half of the repetitions, we mark the median TTE as not

available (N.A.). Note that AFLGo failed to run with the target line for CVE-2016-4487.

Target CVE AFLGo Beacon WindRanger SelectFuzz DAFL

min - 11 30 7 7
2016-4487 max - 653 3,321 662 230

median - 116 474 102 43

min 19 22 28 13 26
2016-4489 max 1,382 2,185 816 594 535

median 226 248 98 154 222

min 6 6 16 9 5
2016-4490 max 242 242 676 175 39

median 69 62 154 48 13

min 666 850 498 646 33
2016-4491 max T.O. (2) 31,462 T.O. (1) T.O. (2) T.O. (89)

median 1,371 1,393 3,111 1,754 N.A.

min 5 12 40 6 36
2016-4492 max T.O. (2) T.O. (1) T.O. (2) 11,442 T.O. (1)

median 373 333 2,460 432 787

min N.A. 510 N.A. N.A. 4,825
2016-6131 max T.O. (160) T.O. (154) T.O. (160) T.O. (160) T.O. (159)

median N.A. N.A. N.A. N.A. N.A.

min 49 64 13 48 41
2016-9827 max T.O. (3) T.O. (2) 3,112 3,756 9,079

median 1,571 1,282 555 664 240

min 65 370 251 98 22
2016-9829 max T.O. (111) T.O. (110) T.O. (19) T.O. (37) T.O. (46)

median N.A. N.A. 7,876 17,159 335

min 7 21 16 9 19
2016-9831 max 9,409 4,377 1,888 1,764 2,562

median 264 254 199 297 126

min 30 76 20 39 9
2017-9988 max T.O. (1) T.O. (1) 3,762 24,912 T.O. (17)

median 1,066 1,217 779 2,791 703

min 452 949 98 272 33
2017-11728 max T.O. (79) T.O. (85) 30,013 T.O. (74) T.O. (7)

median 66,268 N.A. 1,231 53,877 282

min 102 219 13 39 10
2017-11729 max 23,936 T.O. (1) 2,068 T.O. (17) 2,209

median 2,458 2,759 126 2,044 69

7.1 Repetition of Experiment

It is well known that the performance of a fuzzer can vary from run to run, necessitating the
repetition of the experiment [Klees et al. 2018]. Accordingly, previous papers on directed fuzzing
have run each fuzzer multiple times and reported the median TTE. However, there has not been any
study on the number of repetitions required to obtain a reliable conclusion about the performance

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:17

1 2 3 4 5 6 7 8

Trials

0

50

100

150

200

M
ed
ia
n
T
T
E
(s
ec
)

20 repetitions per trial

1 2 3 4

Trials

0

50

100

150

200

M
ed
ia
n
T
T
E
(s
ec
)

40 repetitions per trial

AFLGo

Beacon

WindRanger

SelectFuzz

DAFL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Trials

0

50

100

150

200

250

M
ed
ia
n
T
T
E
(s
ec
)

10 repetitions per trial

Fig. 6. The impact of repetition count on the stability of median TTEs for CVE-2016-4490. Each line plots how

the median TTE changes over the trials. The three graphs are obtained by using different repetition counts

(10, 20, or 40) per each trial.

of directed fuzzers. Our survey result in Table 1 shows that the number of repetitions employed
in the papers was 16 on average. Moreover, half of the papers performed 10 or fewer times of
repetitions.
However, our experiment indicates that such a small number of repetitions is not enough to

mitigate the randomness in directed fuzzing. First, we summarize our overall experimental results
with 12 target bugs in Table 9. We report the minimum, maximum, and median TTE computed
over 160 repetitions. Note that average and standard deviation cannot be computed if there is
any timeout (i.e., fuzzer failing to expose the target bug within the given time limit) among the
repetitions. According to the table, timeouts are common even for cases where the median TTE is
less than an hour. This implies the intense randomness of directed fuzzing.
We further investigate the result of CVE-2016-4490 to confirm that the current practices of

directed fuzzing evaluation indeed involve an insufficient number of repetitions. To avoid extreme
cases, we deliberately chose a target bug where no timeout was observed during the fuzzing.
In Figure 6, we present three graphs that partition the 160 repetitions into 16, 8, and 4 groups
respectively. That is, we reinterpreted our experiment into repeated trials, where each trial consists
of 10, 20, or 40 repetitions. Despite the fact that we have chosen a moderate case of CVE-2016-4490,
the median TTE of each trial varies significantly when the size of the group is 10 or 20. Moreover,
the relative ranking between AFLGo, Beacon, and SelectFuzz changes drastically from trial to trial.
While the degree of fluctuation will differ from bug to bug, it is obvious that many directed fuzzers
have chosen repetition counts that are too small.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:18 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

0 20 40 60 80 100 120 140 160
0

5000

10000

15000

AFLGo

DAFL

(a) Y-axis plo�ed in linear scale

0 20 40 60 80 100 120 140 160
10

0

10
1

10
2

10
3

10
4

(b) Y-axis plo�ed in log scale

Fig. 7. Cactus plot that compares the performance of AFLGo and DAFL on CVE-2017-9988. X-axis denotes

the number of repetitions, and Y-axis denotes the TTE in seconds.

P4 Lessons learned. Due to the randomness of fuzzing, directed fuzzing papers perform a
repetition of experiments to mitigate the randomness. However, we found that the number of
repetitions performed in previous papers is not quite enough to mitigate the randomness. We
suggest that directed fuzzing papers should employ a higher number of repetitions (>20) to
obtain a reliable conclusion.

7.2 Statistical Test and Presentation

According to Klees et al. [2018], comparing the median or average is not enough for evaluating the
performance of fuzzers. Nowadays, the MWU test is taken as a de facto standard for interpreting
repeated fuzzing experiments [Arcuri and Briand 2014; Klees et al. 2018]. Previous work on directed
fuzzing also follows this practice and reports the p-value obtained from the MWU test [Böhme
et al. 2017; Du et al. 2022; Huang et al. 2022; Luo et al. 2023; Meng et al. 2022; Österlund et al. 2020;
Shah et al. 2022].
Unfortunately, it is often unspecified how the MWU test was performed in the presence of

timeouts. One possible naive approach would be using the timeout parameter (e.g., 24 hours in
our experiment) as the TTE of the repetition that failed to find the target bug [Böhme et al. 2017].
However, this can lead to an incorrect result because it uses TTE values that are smaller than
actual observations. Another possible approach is excluding the timed-out repetitions from samples.
However, this may also bias the result because the timeout itself is already a meaningful observation.
Either possible approach can lead to an erroneous conclusion because the MWU test is not designed
to handle censored data. Therefore, we suggest that MWU tests should be performed only when
there is no timeout. Surprisingly, most of the directed fuzzing papers that employed MWU tests do
not specify how timed-out cases were handled [Du et al. 2022; Huang et al. 2022; Luo et al. 2023;
Österlund et al. 2020; Shah et al. 2022].
As an alternative approach, we propose to use the standards from survival analysis [Klein and

Moeschberger 2003]. Survival analysis aims at estimating the time it takes for a specific event to
occur. In directed fuzzing, the exposure of a target bug is the event of our interest.
First, the cactus plot is a popular presentation method in survival analysis that plots the time

of events in ascending order. Figure 7 is a cactus plot that compares DAFL and AFLGo on CVE-
2017-9988. The cactus plot presents rich information about the distribution of TTEs that cannot be
captured in the median or p-value. Although DAFL has a smaller median TTE than AFLGo, it is
more susceptible to randomness at the same time. In particular, DAFL resulted in a timeout of 24
hours in 17 out of 160 repetitions, whereas the AFLGo only timed out once. Despite the wide usage

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:19

of cactus plots in research on SMT solvers [Brain et al. 2017] or program synthesis [Lee 2021; Yoon
et al. 2023], none of the directed fuzzing papers have used it. We argue that cactus plots should be
adopted more widely in directed fuzzing evaluation.
For statistical tests, the log-rank test is used in survival analysis. Log-rank tests can accept

censored data, such as timed-out cases in directed fuzzing. It is important to note that the log-rank
test only supports the null hypothesis that two directed fuzzers are equally effective in discovering
the target bug. Therefore, cactus plots must be provided along with the result of the log-rank test,
if one wants to claim that one tool performs better than the other.
Interestingly, the log-rank test and MWU test yield totally different conclusions from the data

plotted in Figure 7. Log-rank test returns ? > 0.5 for its null hypothesis, implying that there is no
significant difference between the effectiveness of DAFL and AFLGo. Meanwhile, if we insist on
performing the MWU test by using 24 hours as a TTE value for timed-out cases, it returns ? = 0.014

for the null hypothesis that AFLGo outperforms DAFL. In general, it is not trivial to determine if
one statistical test is superior over another. However, in the specific context of directed fuzzing
evaluation, we argue that using a log-rank test and cactus plot is more appropriate for handling
the existence of timeouts.

P5 Lessons learned. Directed fuzzing papers employed statistical tests to interpret the result
from multiple repetitions of fuzzing experiments. However, the most commonly used statistical
test, the MWU test, is not suitable in the presence of timeouts. We suggest that directed fuzzing
papers should jointly use survival analysis, such as log-rank test and cactus plot, to present
the result.

8 RELATED WORK

The key idea of directed grey-box fuzzing (DGF) is to estimate the usefulness of generated test
cases in terms of reaching the given target location. AFLGo [Böhme et al. 2017] is the first DGF
that employs a CFG-based distance metric to evaluate the proximity of a seed to the target location.
Based on this estimation, AFLGo allocates more fuzzing resources to seeds that are considered more
useful in terms of reaching the target location. Since AFLGo, there have been numerous attempts
to effectively guide the fuzzers using sophisticated distance metrics [Canakci et al. 2022; Chen et al.
2018; Du et al. 2022; Lee et al. 2021; Nguyen et al. 2020; Österlund et al. 2020], static analysis on
program semantics [Huang et al. 2022; Kim et al. 2023b; Luo et al. 2023; Meng et al. 2022; Srivastava
et al. 2022], or search algorithms [Shah et al. 2022]. While DGF generally targets at most a few
targets, Savior [Chen et al. 2020] and FishFuzz [Zheng et al. 2023] bridge the gap between DGF
and general fuzzing by targeting all vulnerable locations in a program, which usually scale up to
thousands.
Due to the popularity of fuzzing, there have been several meta-science studies and surveys on

fuzzing [Klees et al. 2018; Mallissery and Wu 2023; Manès et al. 2021; Wang et al. 2020]. Especially,
Klees et al. [2018] performed a thorough study on how to evaluate fuzzers, focusing on the proper
experimental configurations for fuzzing. Meanwhile, we focus on the unique characteristics of
directed fuzzing and discuss the pitfalls specific to evaluating directed fuzzing. Wang et al. [2020]
performed a survey on directed fuzzing, as Manès et al. [2021] did on fuzzing in general. Wang
et al. [2020] categorized previous work based on the fuzzing methodology, but their discussion on
directed fuzzing evaluation was limited. Our work is unique in that we provide a detailed discussion
on the evaluation of directed fuzzing.

There exists previous work on crash triage as well [Arnold et al. 2007; Bartz et al. 2008; Kim et al.
2011; Runeson et al. 2007; Wang et al. 2008]. The triage process may utilize the execution trace of

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

15:20 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

the crashing program [Arnold et al. 2007; Bartz et al. 2008], or utilize the bug report written by
the users [Runeson et al. 2007; Wang et al. 2008]. The main purpose of previous work on crash
triage was to identify the severity of a crash or group similar crashes to help developers fix them.
In contrast, the crash triage performed in directed fuzzing evaluation aims to identify whether a
given crash corresponds to the target bug or not. Thus, more precise decision is required in the
crash triage for directed fuzzing evaluation.
Various benchmarks have been proposed to evaluate fuzzers, ranging from a collection of real-

world bugs [Google 2021; Hazimeh et al. 2021; Metzman et al. 2021] to a framework for injecting
synthetic bugs [Dolan-Gavitt et al. 2016; Görz et al. 2023; Lee et al. 2022; Pewny and Holz 2016; Roy
et al. 2018; Zhang et al. 2022]. However, a benchmark for directed fuzzing evaluation should not
only contain a target bug description. Ideally, it should also contain the information on the specific
target site and concrete criteria for crash triage. Only after so, the evaluation is truly reproducible
with the benchmark.

9 CONCLUSION

In this paper, we address the potential pitfalls in the evaluation of directed fuzzers and propose
guidelines to mitigate them. First, target bug specification and crash triaging are two important
parts of the evaluation, yet not many papers have provided enough details on how they were
performed. The ideal solution for target bug specification and crash triaging is clear, provide the
root cause of the bug to specify the target and use a benchmark with ground truth bug for the crash
triaging. However, in order to achieve this, we need more discussion and study on the evaluation
process by open-sourcing the evaluation process. Second, we have discussed additional issues
specific to the evaluation of directed fuzzers. For directed fuzzing evaluation, we must consider the
static analysis time to correctly assess the usefulness of the fuzzer, set the number of repetitions
robust to the randomness of the fuzzer, deal with timeout with the right statistical test. All of
our claims are supported by empirical studies with a total computational effort equivalent to 30
CPU-years. We hope that our study will help the research community to conduct more transparent
and reproducible evaluations of directed fuzzers.

10 DATA AVAILABILITY

We open-source the scripts and the data used in this paper on Zenodo [Kim et al. 2024].

ACKNOWLEDGMENTS

We thank Haeun Lee for her helpful comments on the paper. This work was partly supported
by (1) the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2021R1A5A1021944, 2021R1C1C1003876 and RS-2023-00210989), and (2) Institute of
Information & communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No.2021-0-01332, Developing Next-Generation Binary Decompiler).

REFERENCES

Andrea Arcuri and Lionel C. Briand. 2014. A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in

software engineering. Software Testing, Verification & Reliability 24, 3 (2014), 219–250.

Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Barton P. Miller, and Martin Schulz. 2007. Stack

Trace Analysis for Large Scale Debugging. In 21th International Parallel and Distributed Processing Symposium (IPDPS

2007), Proceedings, 26-30 March 2007, Long Beach, California, USA. 1–10.

Kevin Bartz, Jack W. Stokes, John C. Platt, Ryan Kivett, David Grant, Silviu Calinoiu, and Gretchen Loihle. 2008. Finding

Similar Failures Using Callstack Similarity. In Third Workshop on Tackling Computer Systems Problems with Machine

Learning Techniques, SysML 2008, December 11, 2008, San Diego, CA, USA, Proceedings.

Trail Of Bits. 2017. CGC Challenge Dataset. https://github.com/trailofbits/cb_multios.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

https://github.com/trailofbits/cb_ multios

Evaluating Directed Fuzzers: Are We Heading in the Right Direction? 15:21

Marcel Böhme. 2016. GCC Bug #70926. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70926.

Marcel Böhme. 2016a. Patch for CVE-2016-4489. https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=59dad006fa31fe3.

Marcel Böhme. 2016b. Patch for CVE-2016-4492 and CVE-2016-4493. https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=

03ef0c6c55ab810.

Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. 2017. Directed Greybox Fuzzing. In

Proceedings of the ACM Conference on Computer and Communications Security. 2329–2344.

Martin Brain, James H Davenport, and Alberto Griggio. 2017. Benchmarking Solvers, SAT-style. In Proceedings of ISSAC

Workshop on Satisfiability Checking and Symbolic Computation.

Sadullah Canakci, Nikolay Matyunin, Kalman Graffi, Ajay Joshi, and Manuel Egele. 2022. TargetFuzz: Using DARTs to Guide

Directed Greybox Fuzzers. In Proceedings of the Asia Conference on Computer and Communications Security. 561–573.

Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei Xie, Xiuheng Wu, and Yang Liu. 2018. Hawkeye: Towards

a Desired Directed Grey-box Fuzzer. In Proceedings of the ACM Conference on Computer and Communications Security.

2095–2108.

Yaohui Chen, Peng Li, Jun Xu, Shengjian Guo, Rundong Zhou, Yulong Zhang, Tao Wei, and Long Lu. 2020. SAVIOR: Towards

Bug-Driven Hybrid Testing. In Proceedings of the IEEE Symposium on Security and Privacy. 1580–1596.

Maria Christakis, Peter Müller, and Valentin Wüstholz. 2016. Guiding Dynamic Symbolic Execution Toward Unverified

Program Executions. In Proceedings of the International Conference on Software Engineering. 144–155.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil Robertson, Frederick Ulrich, and Ryan

Whelan. 2016. LAVA: Large-scale Automated Vulnerability Addition. In Proceedings of the IEEE Symposium on Security

and Privacy. 110–121.

Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, William K. Robertson, Frederick Ulrich,

and Ryan Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition. In Proceedings of the IEEE Symposium on

Security and Privacy. 110–121.

Zhengjie Du, Yuekang Li, Yang Liu, and Bing Mao. 2022. Windranger: A Directed Greybox Fuzzer driven by Deviation Basic

Blocks. In Proceedings of the International Conference on Software Engineering. 2440–2451.

Google. 2021. Fuzzer Test Suite. https://github.com/google/fuzzer-test-suite.

Philipp Görz, Björn Mathis, Keno Hassler, Emre Güler, Thorsten Holz, Andreas Zeller, and Rahul Gopinath. 2023. Systematic

Assessment of Fuzzers using Mutation Analysis. In Proceedings of the USENIX Security Symposium. 4535–4552.

Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2021. Magma: A Ground-Truth Fuzzing Benchmark. In Proceedings of

the ACM International Conference on Measurement and Modeling of Computer Systems. 81–82.

Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao, Rongxin Wu, and Charles Zhang. 2022. Beacon: Directed Grey-Box

Fuzzing with Provable Path Pruning. In Proceedings of the IEEE Symposium on Security and Privacy. 36–50.

Sunghun Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2011. Crash graphs: An aggregated view of multiple

crashes to improve crash triage. In Proceedings of the International Conference on Dependable Systems and Networks.

486–493.

Tae Eun Kim, Jaeseung Choi, Kihong Heo, and Sang Kil Cha. 2023a. DAFL Artifact GitHub Repository. https://github.com/

prosyslab/DAFL-artifact.

Tae Eun Kim, Jaeseung Choi, Kihong Heo, and Sang Kil Cha. 2023b. DAFL: Directed Grey-box Fuzzing guided by Data

Dependency. In Proceedings of the USENIX Security Symposium. 4931–4948.

Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha. 2024. Reproduction Package for the FSE 2024

Article ‘Evaluating Directed Fuzzers: Are We Heading in the Right Direction?’. https://doi.org/10.5281/zenodo.10669580.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018. Evaluating fuzz testing. In Proceedings of the

ACM Conference on Computer and Communications Security. 2123–2138.

John P Klein and Melvin L Moeschberger. 2003. Survival analysis: techniques for censored and truncated data. Springer.

Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. 2021. Constraint-guided Directed Greybox Fuzzing. In Proceedings of

the USENIX Security Symposium. 3559–3576.

Haeun Lee, Soomin Kim, and Sang Kil Cha. 2022. Fuzzle: Making a Puzzle for Fuzzers. In Proceedings of the International

Conference on Automated Software Engineering.

Haeun Lee, Hee Dong Yang, Su Geun Ji, and Sang Kil Cha. 2023. On the Effectiveness of Synthetic Benchmarks for Evaluating

Directed Grey-box Fuzzers. In Proceedings of the Asia-Pacific Software Engineering Conference. 11–20.

Woosuk Lee. 2021. Combining the top-down propagation and bottom-up enumeration for inductive program synthesis.

(2021), 1–28.

Changhua Luo, Wei Meng, and Penghui Li. 2023. SELECTFUZZ: Efficient Directed Fuzzing with Selective Path Exploration.

In Proceedings of the IEEE Symposium on Security and Privacy. 1050–1064.

Sanoop Mallissery and Yu-Sung Wu. 2023. Demystify the Fuzzing Methods: A Comprehensive Survey. Comput. Surveys

(2023).

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70926
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=59dad006fa31fe3
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=03ef0c6c55ab810
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=03ef0c6c55ab810
https://github.com/google/fuzzer-test-suite
https://github.com/prosyslab/DAFL-artifact
https://github.com/prosyslab/DAFL-artifact
https://doi.org/10.5281/zenodo.10669580

15:22 Tae Eun Kim, Jaeseung Choi, Seongjae Im, Kihong Heo, and Sang Kil Cha

Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz, and Maverick

Woo. 2021. The Art, Science, and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47, 11

(2021), 2312–2331.

Henry B Mann and Donald R Whitney. 1947. On a test of whether one of two random variables is stochastically larger than

the other. The annals of mathematical statistics (1947), 50–60.

Ruijie Meng, Zhen Dong, Jialin Li, Ivan Beschastnikh, and Abhik Roychoudhury. 2022. Linear-time Temporal Logic guided

Greybox Fuzzing. In Proceedings of the International Conference on Software Engineering. 1343–1355.

Jonathan Metzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek Arya. 2021. FuzzBench: An Open Fuzzer

Benchmarking Platform and Service. In Proceedings of the International Symposium on Foundations of Software Engineering.

1393–1403.

MITRE. 2016a. CVE-2016-4489. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4489.

MITRE. 2016b. CVE-2016-4491. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4491.

MITRE. 2016c. CVE-2016-4492. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4492.

MITRE. 2016d. CVE-2016-9831. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9831.

MITRE. 2019. CVE-2019-9071. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9071.

MITRE. 2023. MITRE CVE Database. https://cve.mitre.org.

Manh-Dung Nguyen, Sébastien Bardin, Richard Bonichon, Roland Groz, and Matthieu Lemerre. 2020. Binary-level Directed

Fuzzing for Use-After-Free Vulnerabilities. In Proceedings of the International Conference on Research in Attacks, Intrusions,

and Defenses. 47–62.

Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2020. ParmeSan: Sanitizer-Guided Greybox Fuzzing.

In Proceedings of the USENIX Security Symposium. 2289–2306.

Jannik Pewny and Thorsten Holz. 2016. EvilCoder: Automated Bug Insertion. In Proceedings of the Annual Computer Security

Applications Conference. 214–225.

Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug Synthesis: Challenging Bug-Finding Tools

with Deep Faults. In Proceedings of the International Symposium on Foundations of Software Engineering. 224–234.

Per Runeson, Magnus Alexandersson, and Oskar Nyholm. 2007. Detection of Duplicate Defect Reports Using Natural

Language Processing. In Proceedings of the International Conference on Software Engineering. 499–510.

Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A Fast Address

Sanity Checker. In Proceedings of the USENIX Annual Technical Conference. 309–318.

Abhishek Shah, Dongdong She, Samanway Sadhu, Krish Singal, Peter Coffman, and Suman Jana. 2022. MC2: Rigorous and

Efficient Directed Greybox Fuzzing. In Proceedings of the ACM Conference on Computer and Communications Security.

2595–2609.

Prashast Srivastava, Stefan Nagy, Matthew Hicks, Antonio Bianchi, and Mathias Payer. 2022. One Fuzz Doesn’t Fit All:

Optimizing Directed Fuzzing via Target-tailored Program State Restriction. In Proceedings of the Annual Computer Security

Applications Conference. 388–399.

Pengfei Wang, Xu Zhou, Kai Lu, Tai Yue, and Yingying Liu. 2020. SoK: The Progress, Challenges, and Perspectives of

Directed Greybox Fuzzing. CoRR (2020). arXiv:2005.11907

Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-Aware Directed Fuzzing Tool for Automatic

Software Vulnerability Detection. In Proceedings of the IEEE Symposium on Security and Privacy. 497–512.

Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. 2008. An approach to detecting duplicate bug reports using

natural language and execution information. In Proceedings of the International Conference on Software Engineering.

461–470.

Mark Wielaard. 2016a. Initial patch of CVE-2016-4491. https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=a46586c34f32db5.

Mark Wielaard. 2016b. Supplementary patch for CVE-2016-4491. https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=

6b086d35b79425d.

Yongho Yoon, Woosuk Lee, and Kwangkeun Yi. 2023. Inductive Program Synthesis via Iterative Forward-Backward Abstract

Interpretation. In Proceedings of the ACM Conference on Programming Language Design and Implementation. 1657–1681.

Zenong Zhang, Zach Patterson, Michael Hicks, and Shiyi Wei. 2022. FIXREVERTER: A Realistic Bug Injection Methodology

for Benchmarking Fuzz Testing. In Proceedings of the USENIX Security Symposium. 3699–3715.

Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, He Wang, Chunjie Cao, Yuqing Zhang, Flavio Toffalini, and

Mathias Payer. 2023. FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets. In Proceedings of the USENIX Security

Symposium. 1343–1360.

Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng, Ruigang Liang, and Kai Chen. 2020. FuzzGuard: Filtering out

Unreachable Inputs in Directed Grey-box Fuzzing through Deep Learning. In Proceedings of the USENIX Security

Symposium. 2255–2269.

Received 2023-09-27; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 15. Publication date: July 2024.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4489
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4491
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9831
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9071
https://cve.mitre.org
https://arxiv.org/abs/2005.11907
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=a46586c34f32db5
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=6b086d35b79425d
https://gcc.gnu.org/git/?p=gcc.git&a=commit;h=6b086d35b79425d

	Abstract
	1 Introduction
	2 Evaluation of Directed Fuzzing
	2.1 Evaluation Algorithm
	2.2 Issues in Evaluating Directed Fuzzers

	3 Experimental Setup
	4 Target Specification
	4.1 Current Practice: Reporting CVE ID
	4.2 Issues When Specifying Target Line

	5 Crash Triage
	5.1 Current Practice 1: Sanitizer-based Triage
	5.2 Current Practice 2: Patch-based Triage
	5.3 Possible Solutions

	6 Static Analysis Time
	7 Repetition and Statistical Test
	7.1 Repetition of Experiment
	7.2 Statistical Test and Presentation

	8 Related Work
	9 Conclusion
	10 Data Availability
	References

